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Theory for phase transitions in diblock copolymers: The lamellar case
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A mean-field type theory is proposed to study order-disorder transit@b3’s) in block copolymers. The
theory applies to both the weak segregation and the strong segregation regimes. An energy functional is
proposed without appealing to the random phase approxim@&BA). We find additional terms unaccounted
for within the RPA. We work out in detail transitions to the lamellar state and compare the method to other
existing theories of the ODT and numerical simulations. We find good agreement with recent experimental
results and predict that the intermediate segregation regime may have more than one scaling behavior.
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I. INTRODUCTION ing an expression of the free energy based on an effective
potential. The random phase approximation will not be used

Predicting morphologies of block copolymers continuesto get our energy functional.
to be a very challenging problem from the computational Besides succeeding in finding an expression for the en-
point of view. To make computation more feasible, appro-ergy of a diblock copolymer, we also find additional “ideal”
priate energy functionals are needed, and that is the goal ¢¢rms that are missed by the RPA and that were already
this paper. For linear copolymers, the self-consistent fieldound by Holyst and Vilgi27] in the polymer mixture case.
theory (SCFT) developed by Helfand and othefs—7] is  Unlike other existing theories of the order-disorder transition
considered to be the method of choice. It applies quite wel(ODT) in diblock copolymers, our functional predicts a more
to all regimes of segregation. Recently it was successfullgomplex physics between the fully disordered state and the
used to predict different morphologies of linear triblock co- fully segregated state. We show that the symmetric diblock
polymers[6]. The method is based on a naive mean-fieldcopolymer goes through at least two different non-Gaussian
approximation to the partition function. Fluctuation effects regimes before reaching the strong segregat&® regime.
can also be added but at the expense of complicating th@ur results agree favorably with those from experiment and
method[8]. simulation.

Around the order-disorder transition point, Leiblef3] Our method is strictly functional; we do not use any
field theory for diblock copolymers is superior to the self-graphs. Our results to lowest order are similar to the
consistent field theory. For this reason there have been aBtepanow resulf22] and our energy functional is qualita-
tempts to generalize it to all types of segregation, intermeditively the same as Leibler's. The quartic term is similar to
ate as well as strong. Ohta and Kawas{an_la proposed a Leibler’s fourth order term but is much Simpler to work with.
free energy functional of Leibler’s form that treats the strong The paper is organized as follows. In Sec. II, we develop
segregation case of a diblock copolymer. It gives comparablghe formalism. The details are left to the Appendixes. In Sec.
results to the self-consistent field method and its predictiondl, we solve the transition to the lamellar morphology of a
are well supported by experimeit3,14. Fluctuation effects Symmetric diblock. In Sec. IV, we compare our results with
were later added to Leibler’s theory by Fredrickson, Helfandthose of the self-consistent method, Leibler's method, and
and Barraf 15—19, who showed that the peak of the scat- Simulations[28].
tering function depends not only oplN, the Flory-Huggins
parameter, but also on the average segment length and vol-
ume. The Leibler free energy functional was also shown to
be useful in the strong segregation case if the wave vector We start by deriving an expression for the free energy of
dependence of the energy functional is fully kept, sincea block copolymer melt. Even though in this paper we are
higher order spatial harmonics of the order parameter bemainly interested in incompressible diblock copolymers, it
come more and more important as the temperature is loweraghn be easily generalized to, e.g., triblocks. The method we
in the ordered phas20,21. use bypasses the random phase approximation and the use of

Here, we set out to find a similar, but simpler, energyvirtual sources, as was done originally by Leib®]. The
functional for incompressible diblock copolymers that is Hamiltonian we use for our system is that of Edwafa4]

valid for both the weak and strong segregation regimes. Ougeneralized to copolymers and can be taken in the form
work has the same spirit as the recent work of Stepanow

[22], where he used graphical methods to obtain an improved
self-consistent expression for the structure factor of a diblock
copolymer. He avoided using the random phase approxima-
tion (RPA) [23], i.e., Leibler’s theory, and instead found an 3 " n
expansion of the partition function in terms of an effective Holri]= — > f ds
potential[24—26. Here we adopt the same goal of develop- 202 =1 Jo

Il. FREE ENERGY OF A BLOCK COPOLYMER

H=Ho+V,

ds

dri(S))2
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1 , 2 , , Vi1,=V3,=0. (11
V[ri]zif drdr’ X pi(N)pi(r')Vi(r,r’), _ . o N
=1 Ignoring the incompressibility condition for now and after
isolating the free energy of the disordered state we have

i,j=A,B. ()
1
ri(s) is a curve along théth macromolecule that has two sz Dr; exp{ - EApaVaBApB—pgvaﬁApB
types of monomeA and B with densitiespa(r) and pg(r),
respectively. We assume both monomers to have the same 1
Kuhn lengtho. There aren chains in the melt, each with ><exp[ - EngagAp%], (12)
NA(N5p=fN) monomers of typeA and (N—N,) of type B.
The interaction potentia¥ is taken to have the simple form \here we have adopted a matrix notation and have chosen
0 x not to write the space integrals explicitly. The measure is
V<r,r'>=po(X 0)5<r—r'), (2)  defined by

Dri=d(r;)exp(—Ho),
where y is the Flory-Huggins constant ang, is the total
average density of monomers. The partition function of thisand the new densities are measured with respect to those of
incompressible system of macromolecules is then given bythe homogeneous state,

Ap(N)=pa(r)—p°, a=12.

For a symmetric diblock,
1 - -
_ _ 1 T ! ’ 1
Xexp{ (Ho+ Zf drdr’p"(r)V(r,r’)p(r )” poz( 0)_ 13

E"
() _ _ _
Upon introducing a two-component Hartree type fielg
In the above we have set the Boltzmann constant to 1 angith which these virtual molecules are interacting, the parti-

z=J d(r) 5L pa(r) — pe(r)

used a vector notation for the densities, i.e., tion function becomes
_)(r)_<pA(r)) @ 1 drdr’ o, ,
p (1)) Z—fD(ri)szex —Ef rdr’ @ (NV,g(r.r")eg(r’)
The densities are given by ) 0
+1 dr[@a(r)+lpﬁvaﬁ]APa(r) . (14)
N & (f
Paln) = azl , 489 =r4(9)), () We introduce now two more fields and .. Since
and f DD (P (r) = Ap,(r)=1, (15
N o (1
pa(r)= e > | dss@r—r(s)). (6)  we have
0a=1Jf

In Z, the second term in the exponential has a quadratic Z= exp(—Fo)f DeDODuD(r;)exp —ipnD )
symmetric form and hence it can be diagonalized. This di-

agonalization allows us to deal with a virtual set of mono- 1 4 . -

mers that are decoupled. We therefore introduce a new set of X exp[ ~5PaVapPpti(Pat atipgVap)Apal,
variablesp, andp, such that

(16)
1
p()=5Lpalr)+pa(r)], (7)  where
L Fo=nyNf(1-f) 17
p2(1)=5Lpalr)=pa(r)]. (8 s the energy of the disordered state. Now, we make a change
of variables and let
In this set of variables the potential becomes diagonal, with
Vo= 2xp0. © @a(1)= a1+ pa(n) +i f drV,s(npg(n.  (18)

Voo=—=2xpo, (100  We also define the functional
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) _ actly. We are left with only two field® and¥ (see Appen-
F[@]EanD(ri)exr{—(Ho(ri)HJ dr@(r)-p(r)m- dix B),

(19
This functional can be expandedawaround a homogeneous z= f DODV expf — F(P,¥)} (23
state ’ |
f J, f "y where
E = r.ar
[e]= 0 m| =2 ]_ 1
. FD, V)= \lfaﬁCaBM\PM Aaﬁpﬁ+2§2|3;é§%
wlaz - am(Tlo 'm)@a, (1) ¢4,(M2) .
@ (M), 1 1
. +3IndetA, 5+ Eln detB,z (24)
a;=1,2. (20)

The coefficientsC,z .~ are given in Appendix A. In the
following we keep only terms up to the fourth order. After
some rearrangements and writiggin place of¢, we have L= (r)+p°—V, lABA Py, (25)

the following expression for the partition function:
A=(1+zAU)U?

1
z=j DODuDe exp[——cpa(Val-l—Ca Yo
2 poTepTTe B=V-1-V-1A-1y,

1

_ECaBAyQDaQD,B(P)\(Py-FiEaQDa AaB:q,AyCAyaﬁ’

1 Uus=(V+C) 5.
f DV ex aﬁ)\y(\Pa,B (Pacpﬁ)(‘lr)\y PrPy )
(21 In the aboveA, B, A, andU are space dependent matrices.

H h introduced irina fietH U,z is the desired effective potentif24]. We expand the
ere we have introduced a pairing fiet,; So we can logarithmic terms in powers dfi. We do the same when we

cancel the quartic term ip,, . We have also set seek an expression fd@. In all expansions, we keep only
iZ (N =ip2+ V. ugr), (22)  Quadratic terms inV. This is consistent with the fact that we
“ N originally kept only terms up to order 4 in ER0). The final

and again have not written the space integrals explicitlylowest order expression we get from this expansion is our
Thus, we can integrate the field and then theu field ex-  expression for the energy,

1 1 Co0dd,—0q,p,— p)
H(®)= -2 - @
(®)=57 “”(c ) XPO) PN 2 PO e T
1 1 C H H - - -
2224 %Gz, 83~ A1~ Az~ ds) XD(q)P () P(q3)P(q1+02+q3).  (26)

a4l (72 410505 C22001)C22(02) C2xd3) Coa( A1+ 02+ d3)

It can be easily shown tha?72nC,,(q) is actually  This is indeed equivalent t62‘21(q) with the proper normal-
Leibler's structure function. Leibler's structure function ization. However, it is easier to see this graphically and in
S(q) is given by Fig. 1 we plot this function. Hence the first and second terms
in Eq. (26) are the usual RPA result for the inverse scattering

S1(q)— Saa(d) +2Sxp(q) + Sga(q) ) function. The third term is not captured by the RPA approxi-
(a)= Saa(0)Sea(q) —S25(q) 27 mation. It is not due to fluctuations. It was pointed out by
AB Holyst and Vilgis in their study of polymer blenfi27]. This

The definitions of these functions are given in Appendix A.term appeared through the introduction of the pairing field
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0.05 T T T T

0.04

0.03
% FIG. 1. The two-body correlation function
© C(q) in our diagonalized system of collective
0.02 densities.
0.01

q/q,

V. This field is in fact the propagator of our theory. The lation terms, however, and this greatly complicates compu-
fourth term is familiar but the coefficient is much simpler to tations involving it; it is given by{9]

calculate and behaves differently from Leibler's term for @)

large wave vectors. In Fig. 2, we plot both terms for a subset ["(01,02,05,- 91— 02— 0a)

of wave numbers. Our fourth order coefficient is given by = Yit(d1, 02,03 — A1~ 02— s)

C*(a1,02,95, - 41~ d2~qa) X[ Sak(a) — SeH(an) 1 S;ak(d) — Sjak(a,)]
__ Cond01.G2G37 01707 0s) X[SeA(ds) ~ St (A3) [ Sa’(da) — Sp(la)]
C2A01)C22(02)Cox(03)CoxA(d1+ 02+ 03) (29)
28

with i,j,k,I=A,B. g is a function of two-point, three-
This term is independent of any three-body correlation funcpoint, and four-point correlation functions. In Fig. 2, we plot
tions. LeiblersI"® term does depend on three-body corre-both coefficients fog; = — g, =q3= —qa.

x 10
14 T T T T T T T T T
12} A
/
/7
7/
10 L7 g
7
Ve
Vd

5 8fF e . FIG. 2. Comparison of the fourth order coef-
¢ et ficient C™® of this theory with that of Leibler's
T L7 RPA theory'®. C=C®™), Eq.(29), for the con-
S ef e . tinuous curve an€C=T® for the discontinuous

curve.
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To lowest order, the propagator of this theory also agrees
with that of Stepanow22], except that our self-energy term
has additional contributions from the fourth term At{) of
the free energy in Eq(B5). Even though RPA16] and
non-RPA[22] calculations of the properties of the scattering
function give qualitatively similar results, the physical origin 3(z) 0
of the observed behavior is entirely different in the two
cases. Hence, before considering any fluctuations, the contri
bution of this quadratic term must first be studied. In the next
section, where we use our functional to study transitions
from a disordered state to a lamellar state, we will not in-

clude the quadratic non-RPA term in order to compare our 0.2 ! : : :
functional with that of Leibler. 0 02 04 z/D 06 08 !
. THE LAMELLAR SOLUTION FIG. 3. Density profiles for the lamellar morphology given by

Eq. (30) for different values ofyN=10.5,11,12,25,50,100.
Following Melenkevitz and Muthukum#®0], we conjec-
ture a solution that minimizes the energy functional. Know-pejow 10.5. Immediately below the transition temperature,
ing that in the SCFT the densities are found by solving &, energy functional shows that the behavior of the polymer
modified heat equation, we choose a function of the form  ¢hains is no longer Gaussian. For Gaussian chains, the scal-
2 ing factor & between InD) and In(yN) is zero. In our case,
d(x)= E —exfd — 3(q\)?]sin(gx). (30) we find that foryN less than 135 is approximately equal to
1=13,... 7l 0.26. For YN between 13 and 30§=0.52, and, foryN
above 30,6 becomes about 0.19. Hence the 2/3 power law
betweerD andN in the SSL is also verified by this solution.
So far only one intermediate region has been obsef¥8H
f dx®(x)=0, (1)  Here, this solution suggests that the intermediate region is
really more than one phase. Since the behavior below the
and the solution must be periodic. The wave veajois  ODT is believed to be nonuniversal, it will be interesting to

This choice is also dictated by the fact that

given by see if this predicted behavior is also observed in some sym-
metric diblock copolymers other than the one treated. .
2l The inclusion of the non-RPA term that we omitted in this
q'zT’ (32 solution will not change this overall picture. It has only a

moderate effect at high values ofN where higher and
whereD is the lamellar periodicityA is another parameter higher wave numbers are needed for an accurate calculation
besided that is related to the wall thickness of the interfaceof the energy.
region between the two components of the diblock copoly-
mer. Both parameters are to be found by minimizing the
energyH with respect to them. Actually, we solve farfor IV. COMPARISON AND DISCUSSION

a givenD and then calculate the corresponding energy and | Fig. 3, we plot density profiles for differentN’s. We

choose the solution with the lowest energy. We rescale digpserve that the order-disorder transition occurs beidw
mensions in terms of the radius of gyration so the energy peL 19 5 The segregation amplitude grows much fasteyfor
chain is given by

Hln:l = bz(L_xN) 0‘;' ‘ | IEq.SO—_
2 m=1,3,.. m 2nC22(m) os Simu?:gf:i 0
1 Bmbpb bsCozod M, p,r,s) 0.7
384 m,p,r,s=*1,+3... Coo(M)Coy(p)Cox(r)CyryS) o gg
) 0.
where 0.3
N
2 1 2 0.1
me%EXﬂ:—E(ZWm)\/D) 1. (34) \ | | | |
0 0.2 0.4 0.6 0.8 1

Figures 3—8 summarize all the results from this particular
solution. In particular, we observe that this solution predicts FIG. 4. Density profiles of the symmetric lamellar solution for
that the order-disorder transition occurs jg¥ immediately  yN=12.5. The simulation is done foyN/yN.=1.2.
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1 T T T T

Eq.30 —
SCFT -
0.9 Simulation ¢

0.8
0.7

0.6

FIG. 5. Comparison of density
profiles foryN=11.15. The simu-
lation curve is atyN/yN.=1.2.

054

Density

0.4

0.3

0.2

0.1

x/D

just above the ODT temperaturgN, and less than 30. for these short chains is expected to be lower than in the
Hence, in this theory, the strong segregation regime is atideal case. The SCFT curves were found by solving Egs.
tained much faster than the self-consistent field method pre3)—(7) in [5], using a finite difference method and with a
dicts [5]. This is also confirmed by recent experiments onrandom configuration as input. Our results agree well with
symmetric diblock copolymergl3]. Figure 4 compares our those given if7]. In Fig. 5, we instead predict theN value
results to those of SCFT calculations)dti=12.5 and simu- for which our theory coincides with the simulation results.
lations[28]. The simulation was done with chains of 48 seg-We find ayN value of approximately 11.15. Assuming now
ments. Assuming that the critical temperatwyfd, for these that yN/xyN.=1.2 corresponds tgN=11.15 in our theory,
chains is close to 10.495, as is the case for infinite chains, wae plot in Fig. 6 and Fig. 7 the density profiles fgiN

find that the simulation gives a result that falls between our=22.3 andyN=44.5 and compare our results with those of
result and the SCFT result. However, the ODT temperatur¢he simulation. We find relatively good agreement between

1

Eq.30 —
SCFT -

0.9 Simulation ¢

0.8
0.7

0.6

FIG. 6. Comparison of density
profiles for yN=22.3. The simu-
lation curve is atyN/yN.=2.4.

0.5

Density

0.4

0.3

0.2

0.1
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1.2 T T T T

Eq.30 —
SCFT
Simulation ¢

0.8

0.8
FIG. 7. Comparison of density

profiles for yN=44.5. The simu-

lation curve is atyN/yN.=4.8.

Density

0.4

0.2

x/D

theory and simulation especially far from the interfaces. Fi-the experimental results [13]. In the SCFT, SS is believed
nally, in Fig. 8, we check if our theory predicts the observedto occur aroundkN=50. Referencg20] suggests that the SS
scaling behavior. Clearly, we can distinguish three regimestarts to occur foyN larger than 90.

from the plot. The intermediate regime extends from about

xN=13 to aboutyN=27 and has a scaling factérof about

0.52. Above yN=230, the scaling factor is about 0.19, in ACKNOWLEDGMENTS

agreement with observatiof&3]. Compared to Leibler’s en- We thank Dr. Qiliang Yan for providing us with the simu-

ergy functional[21], our results are much closer to the SCF |40 results and Professor C. Goebel for stimulating discus-

results. This is due to the fourth order term, which is smallersiOns and for his comments on the manuscript. This work

than Leibler’s fourth order'term fgr large wave numbers. For, 4o partially supported by the National Science Foundation
large YN, our energy functional gives periods closer to those(Gram No. CTS9901430

of the SCFT method than does the full Leibler Hamiltonian

[21], which overestimates periods by as much as 30%. More-

over, our theory predicts that transition to the strong segre- APPENDIX A

gation regime occurs atN~30, in complete agreement with . ) )
Let Q be a partition function of a melt of polymer chains

in external fieldsp; and ¢4,

1.9 T T T

L& SSL: 6 = 0.19

] Qe [ Pew-ieso-ieagl,  (AD

17 |

1.6 -

] wher
1SC : 6 = 0.52 ere

13

T Ap=(1—fp)pa—fads, (A2)

L2 e Wst . 6 = 0.26

11 ' ' : 2p=dat dg—1,

10 20 30 50 100

FIG. 8. Plot of InD vs In(xN) for a symmetric lamellar mor- and ¢, and ¢g represent the respective densities of compo-
phology. For highyN, the scaling factor is approximately 0.69is ~ NentA and componer. We next expand IQ in terms ofe;
the slope of the best fit segment to the data in three different reand ¢,. SinceQ should be invariant undek ¢— —A¢ and
gions, the weak segregation linf&vSL), the intermediate segrega- > ¢— —2 ¢, only even powers of; are present; hence we
tion configuration(ISC), and the strong segregation lingBSL). write
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-1
InQ= T8 dX1d%C 4 5(X1,X2) @ o(X1) @ (X2)

1
+ EJ‘ Xm' : 'dX4CaB75(Xll' c :X4)(Pa(xl)

e @s(Xg) (A3)
where, e.g.,
Caa(X1,%2) =(A (X)) Ae(X2) o, (A4)
Cozod X1 - - - X)) =(A@(X1) .. . Ap(Xa))o
= CaaX1,%2) C2x X3, X4)
—CoaX1,X3) CoaX2,X4)
—Coa(X1,X4)Cox(X2,X3).  (AS)

The statistical average¢---), are evaluated with a

Gaussian distribution. Hence we find

C2a( ) =Saa(d) —2Sps(0) + Sga(d)
with

PHYSICAL REVIEW E63 041802

The integral overp is Gaussian and can be performed ex-
actly. If we set

1
Aaﬁ:V;[:il’-_FCaﬁ—i_ E\I,)\(;Caﬁ)\(g, (BZ)

we have

1
— 0pA—-1 0
Z= D(I)Dlp eXF{ 41 q’aﬂcaﬁ)\yw)\y_ EpaAaﬁpB

1

2TrIn Aup

1
f Du exp{ - EMQV;;%MB—WJDQ
1
“iPattat 5 1V asAp Viy oyt iV asApn o)
(B3)

Again theu integral is Gaussian. After integrating quit we
have

1
— OpA—10
Z= DODY eX[{ 41 \IIQIBCHB)\.},‘P)\),_ EPO‘AQ’BPB

1 1 4 1
- ETrIn Aup— EgaBaﬁgﬁ— ETrIn Bus

2
Saa(X) = ?[foJrexp(—fo—l)], (AB)
::J DODVY exp— F(P,V)}. (B4)
-1
Sas(X)= 7[exp(— fgx) —1—exp(—x)+exp(—fax)], If we set
(A7) T l=v-1l-v-lyv?t (B5)

andx=q?a>N/6. Similar expressions for the other correla- jeave out terms of orderd, ;)2 and use the incompress-
tion functions, such a5, can be derived straightfor- jpjjity constraint, i.e., P
wardly, but with much more labor. This amounts to calculat-

ing all correlation functionsG,g,s(X1,X2,X3,X4) in @

Gaussian distribution of the form

pI=0, (B6)

CD:L:O,
Gﬂl575(xl’x2'x3’x4):fdsl,aJ' dSZ,,Bf dss,yf ds, s

X ((X1=X(S1,4)) (X2 = X(S2,4))

X 8(X3—X(S3,)) 0(Xa—X(S4.,6)))0>
(A8)

we get after some quite heavy but simple algebra the follow-
ing form:

F(®,A)= %J dx,d%,®(1)T(1,2D(2)

1
-1
wherea, 8,y,8=1,2. HenceC,,,, will be a linear combina- - EJ’ dxy - - dx4A(1,9C;541,2.34A(3.4)

tion of all these functions.

1 -1
APPENDIX B _gf dxy- - -dxg®(1)(TV "U)(1,3A(4,5

We start from X(UV™IT)(5,8D(8)

1
ZZJ DODY exp{ —i oD o= 3V upits—ipoital +1—2f dx;dxA(1,2)U(2,1)

X f Dy exp{~ 3 0u(Vai+Cop) o5+ E 00 35 | D dxg(TVIU) (LA (45)

— 1Y .5Cupro®r®5)- (B1) X(UVTIT)(6,1). (B7)
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Here
A(X11X2):f dx3dx4C2,41,2,3,4¥ (3,4  (B8)

and
D (X)=D,(X).

Now we can integrate ovek since the integral is only
Gaussian, and we find that

z=f DD exp{ — F(P)}, (B9)

where

PHYSICAL REVIEW B3 041802

AFD)=FHDP)—Fy

1 11
22—7/% ®(Q)(T(Q)—67/

szzz(q,—q,p,—p))q)(_ 11
P [Coxq)]?Codp) 24 (73

« C22240,p.k, = (q+p+k)]
apk C22(q) Cox(p) Con(K)Cof( g+ p+Kk)

XP(q)P(p)P(K)P(—p—aq—k),

(B10)

and

T(q) (B11)

1
= sz(q) + V22(q)

is now, within our approximation, the effective potential for

the two-component incompressible copolymer melt.
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