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Theory for phase transitions in diblock copolymers: The lamellar case

A. Rebei and J. De Pablo
Department of Chemical Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706
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A mean-field type theory is proposed to study order-disorder transitions~ODT’s! in block copolymers. The
theory applies to both the weak segregation and the strong segregation regimes. An energy functional is
proposed without appealing to the random phase approximation~RPA!. We find additional terms unaccounted
for within the RPA. We work out in detail transitions to the lamellar state and compare the method to other
existing theories of the ODT and numerical simulations. We find good agreement with recent experimental
results and predict that the intermediate segregation regime may have more than one scaling behavior.
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I. INTRODUCTION

Predicting morphologies of block copolymers continu
to be a very challenging problem from the computatio
point of view. To make computation more feasible, app
priate energy functionals are needed, and that is the goa
this paper. For linear copolymers, the self-consistent fi
theory ~SCFT! developed by Helfand and others@1–7# is
considered to be the method of choice. It applies quite w
to all regimes of segregation. Recently it was successf
used to predict different morphologies of linear triblock c
polymers @6#. The method is based on a naive mean-fi
approximation to the partition function. Fluctuation effec
can also be added but at the expense of complicating
method@8#.

Around the order-disorder transition point, Leibler’s@9#
field theory for diblock copolymers is superior to the se
consistent field theory. For this reason there have been
tempts to generalize it to all types of segregation, interme
ate as well as strong. Ohta and Kawasaki@10–12# proposed a
free energy functional of Leibler’s form that treats the stro
segregation case of a diblock copolymer. It gives compara
results to the self-consistent field method and its predicti
are well supported by experiment@13,14#. Fluctuation effects
were later added to Leibler’s theory by Fredrickson, Helfa
and Barrat@15–19#, who showed that the peak of the sca
tering function depends not only onxN, the Flory-Huggins
parameter, but also on the average segment length and
ume. The Leibler free energy functional was also shown
be useful in the strong segregation case if the wave ve
dependence of the energy functional is fully kept, sin
higher order spatial harmonics of the order parameter
come more and more important as the temperature is low
in the ordered phase@20,21#.

Here, we set out to find a similar, but simpler, ener
functional for incompressible diblock copolymers that
valid for both the weak and strong segregation regimes.
work has the same spirit as the recent work of Stepan
@22#, where he used graphical methods to obtain an impro
self-consistent expression for the structure factor of a dibl
copolymer. He avoided using the random phase approxi
tion ~RPA! @23#, i.e., Leibler’s theory, and instead found a
expansion of the partition function in terms of an effecti
potential@24–26#. Here we adopt the same goal of develo
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ing an expression of the free energy based on an effec
potential. The random phase approximation will not be us
to get our energy functional.

Besides succeeding in finding an expression for the
ergy of a diblock copolymer, we also find additional ‘‘ideal
terms that are missed by the RPA and that were alre
found by Holyst and Vilgis@27# in the polymer mixture case
Unlike other existing theories of the order-disorder transit
~ODT! in diblock copolymers, our functional predicts a mo
complex physics between the fully disordered state and
fully segregated state. We show that the symmetric diblo
copolymer goes through at least two different non-Gauss
regimes before reaching the strong segregation~SS! regime.
Our results agree favorably with those from experiment a
simulation.

Our method is strictly functional; we do not use an
graphs. Our results to lowest order are similar to t
Stepanow result@22# and our energy functional is qualita
tively the same as Leibler’s. The quartic term is similar
Leibler’s fourth order term but is much simpler to work with

The paper is organized as follows. In Sec. II, we deve
the formalism. The details are left to the Appendixes. In S
III, we solve the transition to the lamellar morphology of
symmetric diblock. In Sec. IV, we compare our results w
those of the self-consistent method, Leibler’s method, a
simulations@28#.

II. FREE ENERGY OF A BLOCK COPOLYMER

We start by deriving an expression for the free energy
a block copolymer melt. Even though in this paper we a
mainly interested in incompressible diblock copolymers,
can be easily generalized to, e.g., triblocks. The method
use bypasses the random phase approximation and the u
virtual sources, as was done originally by Leibler@9#. The
Hamiltonian we use for our system is that of Edwards@24#
generalized to copolymers and can be taken in the form

H5H01V,

H0@r i #5
3

2s2 (
i 51

n E
0

N

dsS dr i~s!

ds D 2
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V@r i #5
1

2 E drdr 8 (
i , j 51

2

r i~r !r j~r 8!V i j ~r ,r 8!,

i , j 5A,B. ~1!

r i(s) is a curve along thei th macromolecule that has tw
types of monomerA andB with densitiesrA(r ) andrB(r ),
respectively. We assume both monomers to have the s
Kuhn lengths. There aren chains in the melt, each with
NA(NA5 f N) monomers of typeA and (N2NA) of type B.
The interaction potentialV is taken to have the simple form

V~r ,r 8!5r0S 0 x

x 0D d~r 2r 8!, ~2!

where x is the Flory-Huggins constant andr0 is the total
average density of monomers. The partition function of t
incompressible system of macromolecules is then given

Z5E d~r i !d„12rA~r !2rB~r !…

3expF2S H01
1

2E drdr 8r¢T~r !V~r ,r 8!rW ~r 8! D G .
~3!

In the above we have set the Boltzmann constant to 1
used a vector notation for the densities, i.e.,

rW ~r !5S rA~r !

rB~r !
D . ~4!

The densities are given by

rA~r !5
N

r0
(
a51

n E
0

f

dsd„r 2r a~s!…, ~5!

and

rB~r !5
N

r0
(
a51

n E
f

1

dsd„r 2r a~s!…. ~6!

In Z, the second term in the exponential has a quadr
symmetric form and hence it can be diagonalized. This
agonalization allows us to deal with a virtual set of mon
mers that are decoupled. We therefore introduce a new s
variablesr1 andr2 such that

r1~r !5
1

2
@rA~r !1rB~r !#, ~7!

r2~r !5
1

2
@rA~r !2rB~r !#. ~8!

In this set of variables the potential becomes diagonal, w

V1152xr0 , ~9!

V22522xr0 , ~10!
04180
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h

V125V2150. ~11!

Ignoring the incompressibility condition for now and aft
isolating the free energy of the disordered state we have

Z5E Dr i expH 2
1

2
DraVabDrb2ra

0VabDrbJ
3expH 2

1

2
ra

0VabDrb
0 J , ~12!

where we have adopted a matrix notation and have cho
not to write the space integrals explicitly. The measure
defined by

Dr i5d~r i !exp~2H0!,

and the new densities are measured with respect to thos
the homogeneous state,

Dra~r !5ra~r !2ra
0 , a51,2.

For a symmetric diblock,

r05S 1

2
,0D . ~13!

Upon introducing a two-component Hartree type fieldwa
with which these virtual molecules are interacting, the pa
tion function becomes

Z5E D~r i !Dw expH 2
1

2 E drdr 8wa~r !Vab
21~r ,r 8!wb~r 8!

1 i E dr @wa~r !1 irb
0Vab#∆ra~r !J . ~14!

We introduce now two more fields,F andm. Since

E DFad„Fa~r !2Dra~r !…51, ~15!

we have

Z5exp~2F0!E DwDFDmD~r i !exp$2 imaFa%

3expH 2
1

2
waVab

21rb1 i ~ra1ma1 irb
0Vab!∆raJ ,

~16!

where

F05nxN f~12 f ! ~17!

is the energy of the disordered state. Now, we make a cha
of variables and let

w̄a~r !5wa~r !1ma~r !1 i E drVab~r !rb
0~r !. ~18!

We also define the functional
2-2
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F@w#[ lnH E D~r i !expF2S H0~r i !1 i E dr w̄~r !•r~r ! D G J .

~19!

This functional can be expanded inw̄ around a homogeneou
state

F@w#5 (
m50

`
1

m! (
$a%

E E •••E dr1dr2 . . . drm

3C
a1a2 . . . am~r1,r2 , . . . ,rm!wa1

~r1!wa2
~r2!

. . . wam
~rm!,

a i51,2. ~20!

The coefficientsCab . . . are given in Appendix A. In the
following we keep only terms up to the fourth order. Aft
some rearrangements and writingw in place ofw̄, we have
the following expression for the partition function:

Z5E DFDmDw expH 2
1

2
wa~Vab

211Cab!wb

2
1

4!
Cablgwawbwlwg1 iJawaJ

3E DC expH 1

4!
Cablg~Cab2wawb!~Clg2wlwg!J .

~21!

Here we have introduced a pairing fieldCab so we can
cancel the quartic term inwa . We have also set

iJa~r !5 ira
01Vab

21mb~r !, ~22!

and again have not written the space integrals explici
Thus, we can integrate thew field and then them field ex-
n

A

04180
.

actly. We are left with only two fieldsF andC ~see Appen-
dix B!,

Z5E DFDC exp$2F~F,C!%, ~23!

where

F~F,C!52
1

4!
CabCablgClg1

1

2
ra

0Aab
21rb

01 1
2 za

0Bab
21zb

0

1 1
2 ln detAab1

1

2
ln detBab ~24!

and

za~r !5Fa~r !1ra
02Vab

21Abl
21rl

0 , ~25!

A5~11 1
6 DU!U21,

B5V212V21A21V,

Dab5ClgClgab ,

Uab5~V1C!ab
21.

In the aboveA, B, D, andU are space dependent matrice
Uab is the desired effective potential@24#. We expand the
logarithmic terms in powers ofU. We do the same when w
seek an expression forB. In all expansions, we keep onl
quadratic terms inC. This is consistent with the fact that w
originally kept only terms up to order 4 in Eq.~20!. The final
lowest order expression we get from this expansion is
expression for the energy,
H~F!5
1

2V
(

q
F~q!S 1

C22~q!
22xr0DF~2q!2

1

3!

1

~V !2 (
p

F~q!
C2222~q,2q,p,2p!

@C22~q!#2C22~p!
F~2q!

2
1

4!

1

~V !3 (
q1q2q3

C2222~q1 ,q2 ,q3,2q12q22q3!

C22~q1!C22~q2!C22~q3!C22~q11q21q3!
3F~q1!F~q2!F~q3!F~q11q21q3!. ~26!
in
ms
ing
xi-
by

eld
It can be easily shown thatV /2nC22(q) is actually
Leibler’s structure function. Leibler’s structure functio
S(q) is given by

S21~q!5
SAA~q!12SAB~q!1SBB~q!

SAA~q!SBB~q!2SAB
2 ~q!

. ~27!

The definitions of these functions are given in Appendix
 .

This is indeed equivalent toC22
21(q) with the proper normal-

ization. However, it is easier to see this graphically and
Fig. 1 we plot this function. Hence the first and second ter
in Eq. ~26! are the usual RPA result for the inverse scatter
function. The third term is not captured by the RPA appro
mation. It is not due to fluctuations. It was pointed out
Holyst and Vilgis in their study of polymer blends@27#. This
term appeared through the introduction of the pairing fi
2-3
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FIG. 1. The two-body correlation function
C22(q) in our diagonalized system of collectiv
densities.
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C. This field is in fact the propagator of our theory. Th
fourth term is familiar but the coefficient is much simpler
calculate and behaves differently from Leibler’s term f
large wave vectors. In Fig. 2, we plot both terms for a sub
of wave numbers. Our fourth order coefficient is given by

C(4)~q1 ,q2 ,q3,2q12q22q3!

5
C2222~q1 ,q2 ,q3,2q12q22q3!

C22~q1!C22~q2!C22~q3!C22~q11q21q3!
.

~28!

This term is independent of any three-body correlation fu
tions. Leibler’sG (4) term does depend on three-body cor
04180
et

-
-

lation terms, however, and this greatly complicates com
tations involving it; it is given by@9#

G (4)~q1 ,q2 ,q3,2q12q22q3!

5g i jkl ~q1 ,q2 ,q3,2q12q22q3!

3@SiA
21~q1!2SiB

21~q1!#@SjA
21~q2!2SjB

21~q2!#

3@SkA
21~q3!2SkB

21~q3!#@SlA
21~q4!2SlB

21~q4!#

~29!

with i , j ,k,l 5A,B. g i jkl is a function of two-point, three-
point, and four-point correlation functions. In Fig. 2, we pl
both coefficients forq152q25q352q4.
f-
FIG. 2. Comparison of the fourth order coe
ficient C(4) of this theory with that of Leibler’s
RPA theory,G (4). C5C(4), Eq. ~28!, for the con-
tinuous curve andC5G (4) for the discontinuous
curve.
2-4
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THEORY FOR PHASE TRANSITIONS IN DIBLOCK . . . PHYSICAL REVIEW E63 041802
To lowest order, the propagator of this theory also agr
with that of Stepanow@22#, except that our self-energy term
has additional contributions from the fourth term Tr(LU) of
the free energy in Eq.~B5!. Even though RPA@16# and
non-RPA@22# calculations of the properties of the scatteri
function give qualitatively similar results, the physical orig
of the observed behavior is entirely different in the tw
cases. Hence, before considering any fluctuations, the co
bution of this quadratic term must first be studied. In the n
section, where we use our functional to study transitio
from a disordered state to a lamellar state, we will not
clude the quadratic non-RPA term in order to compare
functional with that of Leibler.

III. THE LAMELLAR SOLUTION

Following Melenkevitz and Muthukumar@20#, we conjec-
ture a solution that minimizes the energy functional. Kno
ing that in the SCFT the densities are found by solving
modified heat equation, we choose a function of the form

F~x!5 (
l 51,3, . . .

2

p l
exp@2 1

2 ~qll!2#sin~qlx!. ~30!

This choice is also dictated by the fact that

E dxF~x!50, ~31!

and the solution must be periodic. The wave vectorq is
given by

ql5
2p l

D
, ~32!

whereD is the lamellar periodicity.l is another paramete
besidesD that is related to the wall thickness of the interfa
region between the two components of the diblock copo
mer. Both parameters are to be found by minimizing
energyH with respect to them. Actually, we solve forl for
a givenD and then calculate the corresponding energy
choose the solution with the lowest energy. We rescale
mensions in terms of the radius of gyration so the energy
chain is given by

H/n5
1

2 (
m51,3,..

bm
2 S V

2nC22~m!
2xND

2
1

384 (
m,p,r ,s561,63 . . .

bmbpbrbsC2222~m,p,r ,s!

C22~m!C22~p!C22~r !C22~s!

3d~s1m1p1r !, ~33!

where

bm5
2

pm
exp@2 1

2 ~2pml/D !2#. ~34!

Figures 3–8 summarize all the results from this particu
solution. In particular, we observe that this solution predi
that the order-disorder transition occurs forxN immediately
04180
s
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below 10.5. Immediately below the transition temperatu
our energy functional shows that the behavior of the polym
chains is no longer Gaussian. For Gaussian chains, the
ing factor d between ln(D) and ln(xN) is zero. In our case
we find that forxN less than 13d is approximately equal to
0.26. For xN between 13 and 30,d50.52, and, forxN
above 30,d becomes about 0.19. Hence the 2/3 power l
betweenD andN in the SSL is also verified by this solution
So far only one intermediate region has been observed@13#.
Here, this solution suggests that the intermediate regio
really more than one phase. Since the behavior below
ODT is believed to be nonuniversal, it will be interesting
see if this predicted behavior is also observed in some s
metric diblock copolymers other than the one treated in@13#.
The inclusion of the non-RPA term that we omitted in th
solution will not change this overall picture. It has only
moderate effect at high values ofxN where higher and
higher wave numbers are needed for an accurate calcula
of the energy.

IV. COMPARISON AND DISCUSSION

In Fig. 3, we plot density profiles for differentxN’s. We
observe that the order-disorder transition occurs belowxN
510.5. The segregation amplitude grows much faster forxN

FIG. 3. Density profiles for the lamellar morphology given b
Eq. ~30! for different values ofxN510.5,11,12,25,50,100.

FIG. 4. Density profiles of the symmetric lamellar solution f
xN512.5. The simulation is done forxN/xNc51.2.
2-5
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FIG. 5. Comparison of density
profiles forxN511.15. The simu-
lation curve is atxN/xNc51.2.
.
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just above the ODT temperaturexNc and less than 30
Hence, in this theory, the strong segregation regime is
tained much faster than the self-consistent field method
dicts @5#. This is also confirmed by recent experiments
symmetric diblock copolymers@13#. Figure 4 compares ou
results to those of SCFT calculations atxN512.5 and simu-
lations@28#. The simulation was done with chains of 48 se
ments. Assuming that the critical temperaturexNc for these
chains is close to 10.495, as is the case for infinite chains
find that the simulation gives a result that falls between
result and the SCFT result. However, the ODT tempera
04180
t-
e-

-

e
r

re

for these short chains is expected to be lower than in
ideal case. The SCFT curves were found by solving E
~3!–~7! in @5#, using a finite difference method and with
random configuration as input. Our results agree well w
those given in@7#. In Fig. 5, we instead predict thexN value
for which our theory coincides with the simulation resul
We find axN value of approximately 11.15. Assuming no
that xN/xNc51.2 corresponds toxN511.15 in our theory,
we plot in Fig. 6 and Fig. 7 the density profiles forxN
522.3 andxN544.5 and compare our results with those
the simulation. We find relatively good agreement betwe
FIG. 6. Comparison of density
profiles for xN522.3. The simu-
lation curve is atxN/xNc52.4.
2-6
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FIG. 7. Comparison of density
profiles for xN544.5. The simu-
lation curve is atxN/xNc54.8.
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theory and simulation especially far from the interfaces.
nally, in Fig. 8, we check if our theory predicts the observ
scaling behavior. Clearly, we can distinguish three regim
from the plot. The intermediate regime extends from ab
xN513 to aboutxN527 and has a scaling factord of about
0.52. AbovexN530, the scaling factor is about 0.19,
agreement with observations@13#. Compared to Leibler’s en
ergy functional@21#, our results are much closer to the SC
results. This is due to the fourth order term, which is sma
than Leibler’s fourth order term for large wave numbers. F
largexN, our energy functional gives periods closer to tho
of the SCFT method than does the full Leibler Hamiltoni
@21#, which overestimates periods by as much as 30%. Mo
over, our theory predicts that transition to the strong seg
gation regime occurs atxN'30, in complete agreement wit

FIG. 8. Plot of lnD vs ln(xN) for a symmetric lamellar mor-
phology. For highxN, the scaling factor is approximately 0.69.d is
the slope of the best fit segment to the data in three different
gions, the weak segregation limit~WSL!, the intermediate segrega
tion configuration~ISC!, and the strong segregation limit~SSL!.
04180
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the experimental results in@13#. In the SCFT, SS is believed
to occur aroundxN550. Reference@20# suggests that the SS
starts to occur forxN larger than 90.
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APPENDIX A

Let Q be a partition function of a melt of polymer chain
in external fieldsw1 andw1,

Q@w i #5E D~r !exp$2 iw1Sf2 iw2Df%, ~A1!

where

Df5~12 f A!fA2 f AfB , ~A2!

Sf5fA1fB21,

andfA andfB represent the respective densities of comp
nentA and componentB. We next expand lnQ in terms ofw1
andw2. SinceQ should be invariant underDf→2Df and
Sf→2Sf, only even powers ofw i are present; hence w
write

e-
2-7
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ln Q5
21

2! E dx1dx2Cab~x1 ,x2!wa~x1!wb~x2!

1
1

4! E dx1•••dx4Cabgd~x1 ,•••,x4!wa~x1!

•••wd~x4!1•••, ~A3!

where, e.g.,

C22~x1 ,x2!5^Dw~x1!Dw~x2!&0 , ~A4!

C2222~x1 . . . x4!5^Dw~x1! . . . Dw~x4!&0

2C22~x1 ,x2!C22~x3 ,x4!

2C22~x1 ,x3!C22~x2 ,x4!

2C22~x1 ,x4!C22~x2 ,x3!. ~A5!

The statistical averageŝ•••&0 are evaluated with a
Gaussian distribution. Hence we find

C22~q!5SAA~q!22SAB~q!1SBB~q!

with

SAA~x!5
2

x2
@ f Ax1exp~2 f Ax21!#, ~A6!

SAB~x!5
21

x2
@exp~2 f Bx!212exp~2x!1exp~2 f Ax!#,

~A7!

and x5q2s2N/6. Similar expressions for the other correl
tion functions, such asC2222, can be derived straightfor
wardly, but with much more labor. This amounts to calcul
ing all correlation functionsGabgd(x1 ,x2 ,x3 ,x4) in a
Gaussian distribution of the form

Gabgd~x1 ,x2 ,x3 ,x4!5E ds1,aE ds2,bE ds3,gE ds4,d

3^d„x12x~s1,a!…d„x22x~s2,b!…

3d„x32x~s3,g!…d„x42x~s4,d!…&0 ,

~A8!

wherea,b,g,d51,2. HenceC2222 will be a linear combina-
tion of all these functions.

APPENDIX B

We start from

Z5E DFDC exp$2 imaFa2 1
2 maVab

21mb2 ira
0ma%

3E Dw exp$2 1
2 wa~Vab

211Cab!wb1 iJawa

2 1
12 CabCabldwlwd%. ~B1!
04180
-

The integral overw is Gaussian and can be performed e
actly. If we set

Aab5Vab
211Cab1

1

6
CldCabld , ~B2!

we have

Z5E DFDC expH 21

4!
CabCablgClg2

1

2
ra

0Aab
21rb

0

2
1

2
Tr ln AabJ E Dm expH 2

1

2
maVab

21mb2 imaFa

2 ira
0ma1

1

2
maVab

21Abl
21Vlg

21mg1 imaVab
21Abl

21rl
0J
~B3!

Again them integral is Gaussian. After integrating outm, we
have

Z5E DFDC expH 21

4!
CabCablgClg2

1

2
ra

0Aab
21rb

0

2
1

2
Tr ln Aab2

1

2
zaBab

21zb2
1

2
Tr ln BabJ

ªE DFDC exp$2F~F,C!%. ~B4!

If we set

T215V212V21UV21, ~B5!

leave out terms of order (Cablg)2, and use the incompress
ibility constraint, i.e.,

r2
050, ~B6!

F150,

we get after some quite heavy but simple algebra the follo
ing form:

F~F,L!5
1

2 E dx1dx2F~1!T~1,2!F~2!

2
1

4! E dx1•••dx4L~1,2!C2222
21 ~1,2,3,4!L~3,4!

2
1

2 E dx1•••dx8F~1!~TV21U !~1,3!L~4,5!

3~UV21T!~5,8!F~8!

1
1

12E dx1dx2L~1,2!U~2,1!

1
1

12E dx1•••dx6~TV21U !~1,4!L~4,5!

3~UV21T!~6,1!. ~B7!
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Here

L~x1 ,x2!5E dx3dx4C2222~1,2,3,4!C~3,4! ~B8!

and

F~x!5F2~x!.

Now we can integrate overL since the integral is only
Gaussian, and we find that

Z5E DF exp$2F~F!%, ~B9!

where
elt

04180
DF~F!5F~F!2F0

5
1

2V
(

q
F~q!S T~q!2

1

6

1

V

3(
p

C2222~q,2q,p,2p!

@C22~q!#2C22~p!
D F~2q!2

1

24

1

~V !3

3(
qpk

C2222@q,p,k,2~q1p1k!#

C22~q!C22~p!C22~k!C22~q1p1k!

3F~q!F~p!F~k!F~2p2q2k!, ~B10!

and

T~q!5
1

C22~q!
1V22~q! ~B11!

is now, within our approximation, the effective potential f
the two-component incompressible copolymer melt.
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